PORTUGALIAE MATHEMATICA

VOLUME 35

1 9 7 6

Edicão de

«GAZETA DE MATEMÁTICA, LDA»

PORTUGALIAE MATHEMATICA Rua Diário de Notícias, 134, 1.º-Esq. LISBOA-2 (PORTUGAL)

ON THE EXPONENTIAL FUNCTION AND PÓLYA'S PROOF (1)

BY DONALD E. MYERS
University of Tucson, Arisona — U. S. A.

Let a_1, \dots, a_n be positive numbers. Denote by $A = \frac{1}{n} \sum_{i=1}^n a_i$ and $G = \left[\prod_{i=1}^n a_i\right]^{1/n}$. Pólya [1, pp. 103] has given an elementary proof that $A \ge G$ as follows

$$1 = e^0 = \exp\left[\sum_{i=1}^n \left(\frac{a_i}{A} - 1\right)\right] \ge \prod_{i=1}^n \frac{a_i}{A} = \frac{G^n}{A^n}.$$

Wetzel [2] pointed out the two properties essential for the proof characterize the exponential function namely

$$(1) f(x+y) \ge f(x) f(y)$$

$$(2) f(x) \ge 1 + x.$$

Theorem (Wetzel). Let f be defined on an interval containing the origin and such that f satisfies (1) and (2) on I then $f(x) = e^x$.

If we consider functions of several variables then the analogues of (1) and (2) are

$$(3) f(x+y) \ge f(x) f(y)$$

$$(4) f(x) \ge \prod_{i=1}^{n} (1+x_i)$$

⁽¹⁾ Received April, 1974.

where $x = (x_1, \dots, x_n)$, $y = (y_1, \dots, y_n)$, $x + y = (x_1 + y_1, \dots, x_n + y_n)$. Unfortunately these are not sufficient for Pólya's proof and we replace (3) by

(5)
$$f(x) = 1$$
 for all $x = (x_1, \dots, x_n)$ with $\sum_{i=1}^{n} x_i = 0$.

From (5), with $x_i = \frac{a_i}{A} - 1$ we have 1 = f(x), then from (4) we have $1 \ge \prod_{i=1}^n \left(1 + \frac{a_i}{A} - 1\right) = \frac{G^n}{A^n}$. It seems natural to ask whether (4) and (5) characterize the *n*-variable exponential function $\exp\left(\sum_{i=1}^n x_i\right)$. The answer is no as is shown by the following lemma.

Lemma. Let $-1 < x_i < 1$ for $i = 1, 2, \cdots$, n and

$$1 - \left(\sum_{i=1}^{n-1} x_i\right) > 0$$

then

$$f(x) \ge \prod_{i=1}^{n} (1 + x_i)$$

(5)
$$f(x) = 1 \text{ for } x_1 + \dots + x_n = 0$$
$$x = (x_1, \dots, x_n)$$

where

$$f(x) = \frac{1 + x_n}{1 - \sum_{i=1}^{n-1} x_i} \neq \exp\left(\sum_{i=1}^n x_i\right).$$

PROOF. We proceed by induction. Consider n=2, since $-1 < x_1 < 1$, $1 > 1 - x_1^2 > 0$ and $1 + x_2 > 0$ hence $\frac{1}{1 - x_1} > 1 + x_1$

and
$$\frac{1+x_2}{1-x_1} \ge (1+x_1)(1+x_2)$$
. If $x_1+x_2=0$ then $x_1=-x_2$ and $1-x_1=1+x_2$ hence $\frac{1+x_2}{1+x_2}=1$. Suppose now that
$$\frac{1+x_k}{1-\sum_{i=1}^{k-1}x_i} \ge \prod_{i=1}^{k} (1+x_i) \text{ or equivalently } \frac{1}{1-\sum_{i=1}^{k-1}x_i} \ge \prod_{i=1}^{k-1} (1+x_i)$$
 for all $k \le n$, all $-1 < x_i < 1$, $i = 1, 2, \dots, k$ and $1 - \left(\sum_{i=1}^{k-1}x_i\right) > 0$.

Rewrite

$$\frac{1}{1 - \sum_{i=1}^{k} x_i} = \left(\frac{1}{1 - x_k}\right) / \left[1 - \sum_{i=1}^{k-1} \frac{x_i}{1 - x_k}\right].$$

Since

$$1 - \sum_{i=1}^{k-1} \frac{x_i}{1 - x_k} > 0, \text{ i. e. } 1 - \sum_{i=1}^{k} x_i > 0$$

by the induction hypothesis

$$\frac{1}{1-\sum_{i=1}^{k}x_{i}} \geq \frac{1}{1-x_{k}} \cdot \prod_{i=1}^{k-1} \left[1+\frac{x_{i}}{1-x_{k}}\right].$$

But
$$1 + \frac{x_i}{1 - x_k} \ge 1 + x_i$$
 and $\frac{1}{1 - x_k} \ge 1 + x_k$ hence
$$\frac{1}{1 - \sum_{i=1}^{k} x_i} \ge \prod_{i=1}^{k} (1 + x_i) \text{ or } \frac{1 + x_{k+1}}{1 - \sum_{i=1}^{k} x_i} \ge \prod_{i=1}^{k+1} (1 + x_i).$$

Clearly (5) is satisfied by f for $n \ge 2$.

We should note at this point that even (4) and (5) are stronger properties that are necessary for Pólya's proof. All that is really needed is the inequality

$$1 \ge \prod_{i=1}^n (1 + x_i)$$

if $x_1 + \cdots + x_n = 0$. This of course is a simple consequence of

$$1 = e^0 = \exp \sum_{i=1}^n x_i \ge \prod_{i=1}^n \exp x_i$$
$$\ge \prod_{i=1}^n (1 + x_i).$$

However we can also give an elementary proof without using the exponential function.

Lemma. Let x_1, \dots, x_n be real numbers such that $x_1 + \dots + x_n = 0$ then $1 \ge \sum_{i=1}^{n} (1 + x_i)$.

PROOF. Since $x_1 + \cdots + x_n = 0$ if not all x_i 's are zero, there is one such that $x_i < 0$. Without loss of generality assume $x_n < 0$. Consider n = 2 then $(1 + x_1)(1 + x_2) = (1 - x_1)(1 + x_1) = 1 - x_1^2 \le 1$. Suppose then that for all $k \le n - 1$ and $x_1 + \cdots + x_k = 0$, $1 \ge \prod_{i=1}^k (1 + x_i)$. Then $1 \ge \left[\prod_{i=1}^{n-2} (1 + x_i)\right](1 + x_{n-1} + x_n)$ but $1 + x_{n-1} + x_n = (1 + x_n)\left(1 + \frac{x_{n-1}}{1 + x_n}\right)$. Since we also assume without loss of generality that $-1 < x_n$, we have $\frac{x_{n-1}}{1 + x_n} > x_{n-1}$

Hence we now could prove that $A \ge G$ without using the properties of the exponential function.

hence $1+x_{n-1}+x_n\geq (1+x_n)(1+x_{n-1})$ and $1\geq \prod_{i=1}^{n}(1+x_i)$.

In conclusion we return to the characterization of the exponential function.

Theorem. Let f be defined on an open rectangle I in R^n such that the origin is in I. Suppose further that

(6)
$$f(0) = 1$$
 $0 = (0, \dots, 0)$

(7)
$$f(x + \hat{h}_i) \ge f(x)(1 + h_i)$$

where $\hat{h}_i = (0, \dots, h_i, \dots, 0)$ for $i = 1, \dots, n$ and $x, \hat{h}_i, x + \hat{h}_i$ in 1. Then $f(x) = exp \sum_{i=1}^n x_i$.

Proof. We consider first the case where $h_i > 0$. From (7) we have

$$f(x) \ge f(x + h_i)(1 - h_i)$$

or

$$f(x) \frac{1}{1 - h_i} > \frac{f(x + h_i) - f(x)}{h_i}$$

and also $\frac{f(x+h_i)-f(x)}{h_i} > f(x)$. If $h_i < 0$ both inequalities reverse. In either case we conclude that $\frac{f(x)}{x_i} = f(x)$, hence $f(x) = C \exp \sum_{i=1}^{n} x_i$. From (6) C = 1.

Note that (6) and (7) are «weaker» than (3) and (4).

REFERENCES

- [1] G. H. HARDY, J. E. LITTLEWOOD and G. PÓLYA, *Inequalities*, 2nd Edition, Cambridge University Press, 1952.
- [2] J. E. WETZEL, On the functional equality $f(x+y) \ge f(x) + (y)$, American Mathematical Monthly 74 (1967), pp. 1065.